Implications of Transition State Confinement within Small Voids for Acid Catalysis

نویسندگان

  • Andrew J. Jones
  • Stacey I. Zones
  • Enrique Iglesia
چکیده

The catalytic diversity of microporous aluminosilicates reflects their unique ability to confine transition states within intracrystalline voids of molecular dimensions and the number (but not the strength) of the protons that act as Brønsted acids. Firstorder rate constants for CH3OH conversion to dimethyl ether (DME) reflect the energy of transition states relative to those for gaseous and H-bonded CH3OH molecules; on zeolites, these constants depend exponentially on n-hexane physisorption energies for different void size and shape and proton location, indicating that van der Waals stabilization of transition states causes their different reactivity, without concomitant effects of void structure or proton location on acid strength. The dispersive contribution to adsorption enthalpies of DME, a proxy in shape and size for relevant transition states, was calculated using density functional theory and Lennard-Jones interactions on FAU, SFH, BEA, MOR, MTW, MFI, and MTT zeolites and averaged over all proton locations; first-order rate constants also depended exponentially on these enthalpies. In contrast, zero-order rate constants, which reflect the stability of transition states relative to protonated CH3OH dimers similar in size, depended weakly on dispersive stabilization, whether measured from experiment or simulations, because dispersive forces influence species similar in size to the same extent. These results, taken together, demonstrate the preeminent effects of confinement on zeolite reactivity and the manner by which the local voids around protons held within diverse intracrystalline environments give rise to the unique behaviors that have made zeolites ubiquitous in the practice of catalysis. Enthalpic stabilization of relevant transition states prevail over entropic losses caused by confinement at low temperatures in a manner reminiscent of how catalytic pockets and solvents do so in catalysis by molecules or enzymes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis.

Acidic zeolites are indispensable catalysts in the petrochemical industry because they select reactants and their chemical pathways based on size and shape. Voids of molecular dimensions confine reactive intermediates and transition states that mediate chemical reactions, stabilizing them by van der Waals interactions. This behavior is reminiscent of the solvation effects prevalent within enzym...

متن کامل

The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions.

The ability of molecular sieves to control the access and egress of certain reactants and products and to preferentially contain certain transition states while excluding others based on size were captured as shape selectivity concepts early in the history of zeolite catalysis. The marked consequences for reactivity and selectivity, specifically in acid catalysis, have since inspired and sustai...

متن کامل

Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms

The effects of heteroatom identity (Al 3+ , Ga 3+ , Fe 3+ , or B 3+), concentration and location on catalysis by MFI zeolites are examined and interpreted mechanistically using methanol dehydration rate constants and density functional theory estimates of acid strength (deprotonation energies, DPE). In doing so, we shed light on the concomitant effects of confinement and acid strength on cataly...

متن کامل

Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites.

The location of Brønsted acid sites within zeolite channels strongly influences reactivity because of the extent to which spatial constraints determine the stability of reactants and of cationic transition states relevant to alkane activation catalysis. Turnover rates for monomolecular cracking and dehydrogenation of propane and n-butane differed among zeolites with varying channel structure (H...

متن کامل

Acid strength and solvation effects on methylation, hydride transfer, and isomerization rates during catalytic homologation of C1 species

0021-9517/$ see front matter 2011 Elsevier Inc. A doi:10.1016/j.jcat.2011.09.007 ⇑ Corresponding author at: Department of C Engineering, University of California at Berkeley, USA E-mail addresses: [email protected], igle Dimethyl ether (DME) homologation forms isobutane and triptane (2,2,3-trimethylbutane) with supraequilibrium selectivities within C4 and C7 hydrocarbons on both mesopo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014